Incremental diarization of telephone conversations
نویسندگان
چکیده
Speaker diarization systems attempt segmentation and labeling of a conversation between R speakers, while no prior information is given regarding the conversation. Most state of the art diarization systems require the full body of the conversation data prior to the application of some diarization approach. However, for some applications such as forensics, which handles vast amount of data, an on-line or incremental diarization is of high importance. For that purpose, a two-stage incremental diarization of telephone conversations algorithm is suggested. On the first stage, a fully unsupervised diarization algorithm is applied over an initial training segment from the conversation. The secondstage is composed of time-series clustering of increments of the conversation. Applying incremental diarization over 1802 telephone conversations from NIST 2005 SER generated an increase in diarization error of approximately 2% compared to the diarization error of an off-line diarization system.
منابع مشابه
Online two speaker diarization
Short conversations pose some challenges for online diarization due to data sparseness and unbalanced representation of the two speakers. This paper presents our recent advances in online diarization of two-wire telephone conversations, introducing several methods for improving processing efficiency and accuracy on short conversations. Our framework is based on the offline diarization of a conv...
متن کاملOnline Diarization of Telephone Conversations
Speaker diarization systems attempts to perform segmentation and labeling of a conversation between R speakers, while no prior information is given regarding the conversation. Diarization systems basically tries to answer the question ”Who spoke when?”. In order to perform speaker diarization, most state of the art diarization systems operate in an off-line mode, that is, all of the samples of ...
متن کاملUnsupervised Compensation of Intra-Session Intra-Speaker Variability for Speaker Diarization
This paper presents a novel framework for unsupervised compensation of intra-session intra-speaker variability in the context of speaker diarization. Audio files are parameterized by sequences of GMM-supervectors representing overlapping short segments of speech. Session-dependent intra-session intra-speaker variability is estimated in an unsupervised manner, and is compensated using the nuisan...
متن کاملUnsupervised Methods for Speaker Diarization
Given a stream of unlabeled audio data, speaker diarization is the process of determining “who spoke when.” We propose a novel approach to solving this problem by taking advantage of the effectiveness of factor analysis as a front-end for extracting speaker-specific features and exploiting the inherent variabilities in the data through the use of unsupervised methods. Upon initial evaluation, o...
متن کاملLium Spkdiarization: an Open Source Toolkit for Diarization
This paper presents an open-source diarization toolkit which is mostly dedicated to speaker and developed by the LIUM. This toolkit includes hierarchical agglomerative clustering methods using well-known measures such as BIC and CLR. Two applications for which the toolkit has been used are presented: one is for broadcast news using the ESTER 2 data and the other is for telephone conversations u...
متن کامل